653 research outputs found

    Fiber-based tissue engineering: Progress, challenges, and opportunities.

    Get PDF
    Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the abovementioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice

    Nanoscale and microscale approaches for engineering the in vitro cellular microenvironment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2005."June 2005."Includes bibliographical references.Micro- and nanofabrication approaches have dramatically changed our society through their use in microelectronics and telecommunication industries. These engineering tools are also useful for many biological applications ranging from drug delivery to DNA sequencing, since they can be used to fabricate small features at a low cost and in a reproducible manner. The goal of this thesis was to develop techniques based on the merger of novel materials and nano and microfabrication approaches to manipulate cell microenvironment in culture. To control cell migration and to restrict cell or colony size, cells and proteins were patterned by using molding or printing methods. Poly(ethylene glycol)-based molecules and polysaccharides were used to control cell-substrate interactions and to prevent cell adhesion on specific regions of a substrate. To control cell-cell contact, layer-by-layer deposition of ionic biopolymers (i.e. negatively charged hyaluronic acid and positively charged poly-L-lysine) was used to generate patterned co-cultures. In addition, to control cell-soluble factor interactions, microfluidic-based approaches were developed. To pattern cells and proteins within microchannels, a soft lithographic method was developed to pattern microchannel substrates using printing and molding approaches.(cont.) To easily immobilize cells within channels, poly(ethylene glycol) microstructures were used to capture cells within low shear stress regions. These techniques also allowed for the fabrication of multiphenotype cell arrays. In addition, techniques were developed to control the interaction of cells within hydrogels by controlling the spatial properties of hydrogels.by Ali Khademhosseini.Ph.D

    Micro- and nanoengineering approaches to control stem cell-biomaterial interactions.

    Get PDF
    As our population ages, there is a greater need for a suitable supply of engineered tissues to address a range of debilitating ailments. Stem cell based therapies are envisioned to meet this emerging need. Despite significant progress in controlling stem cell differentiation, it is still difficult to engineer human tissue constructs for transplantation. Recent advances in micro- and nanofabrication techniques have enabled the design of more biomimetic biomaterials that may be used to direct the fate of stem cells. These biomaterials could have a significant impact on the next generation of stem cell based therapies. Here, we highlight the recent progress made by micro- and nanoengineering techniques in the biomaterials field in the context of directing stem cell differentiation. Particular attention is given to the effect of surface topography, chemistry, mechanics and micro- and nanopatterns on the differentiation of embryonic, mesenchymal and neural stem cells

    The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules

    Get PDF
    A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues.Samsung Scholarship FoundationNational Institutes of Health (U.S.) (HL092836)National Institutes of Health (U.S.) (EB02597)National Institutes of Health (U.S.) (AR057837)National Science Foundation (U.S.) (CAREER Award DMR0847287)United States. Office of Naval Research (Young Investigator Award

    A multilayered microfluidic blood vessel-like structure

    Get PDF
    There is an immense need for tissue engineered blood vessels. However, current tissue engineering approaches still lack the ability to build native blood vessel-like perfusable structures with multi-layered vascular walls. This paper demonstrated a new method to fabricate tri-layer biomimetic blood vessel-like structures on a microfluidic platform using photocrosslinkable gelatin hydrogel. The presented method enables fabrication of physiological blood vessel-like structures with mono-, bi- or tri-layer vascular walls. The diameter of the vessels, the total thickness of the vessel wall and the thickness of each individual layer of the wall were independently controlled. The developed fabrication process is a simple and rapid method, allowing the physical fabrication of the vascular structure in minutes, and the formation of a vascular endothelial cell layer inside the vessels in 3–5 days. The fabricated vascular constructs can potentially be used in numerous applications including drug screening, development of in vitro models for cardiovascular diseases and/or cancer metastasis, and study of vascular biology and mechanobiology.American University of Beirut (startup grant and University Research Board grant)National Council for Scientific Research (Lebanon)National Science Foundation (U.S.) (EFRI-1240443)Immodgel (602694)National Institutes of Health (U.S.) (EB012597, AR057837, DE021468, HL099073, AI105024, AR063745)National Institute of General Medical Sciences (U.S.) ( Award Number P20GM103638-04)King Abdulaziz City for Science and Technology (Grant No. 12-MED3096-3

    Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation

    Get PDF
    Adipose tissue-derived stem cells (ASCs) are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs) and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi) increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen) and integrin (CD11b and CD31) expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (Ξ²1) and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.National Institutes of Health (U.S.) (EB008392

    Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors

    Get PDF
    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyses revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (P\u3c0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering
    • …
    corecore